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Thermal Analysis of the Air Inside a Rolling Deformed Torus 

Youn J. Kim* 
(Received March 27, 1997) 

A theoretical model has been developed for calculat ing the internal temperature dis t r ibut ion 

and its associated heat flux in a deformed torus while free roll ing under load. With the pure 

conduct ion limit, the analytic expression for the heat transfer rate predicted by this model is 

derived. Analyt ical  results show that the dis tr ibut ions of temperatures and heat transfer rates in 

a roll ing deformed torus are strongly influenced by the thermal boundary  condi t ions  at the inner 

and outer tire surfaces. Also, the results of present study match quite closely with those found 

by Wey in the region away from the footprint. 
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Nomenclature 
a : Undeformed cross sect ional  

radius of torus 

Cp, Ct :Specif ic  of heat at constant  

pressure and volume, respec- 

tively 

: Wall  velocity in the z-direc-  

tion 

: Heat transfer coefficient 

: Thermal  conductivi ty of air 

: Half  length of the deformed 

region 

: Nusselt number  ( h �9 2a /k )  

: Prandtl  number  (=ttCi,/te) 
: Local radius of the torus cross 

section 

: Cylindrical  coordinates 

: Reynolds number  (=ca~u)  

: Temperature 

: Velocity components  in radial 

(v ) ,  a n g u l a r ( 0 ) ,  and axial 

(qS) directions 

i i ,v,u,(U, V ,W' )  : Velocity components (d imen-  

sionless) in the cartesian 

coordinates 

w'  : The increment in the qS-com- 

ponent  of velocity 

C 

h 

k 

L 

Nil 
Pr 

R 

Y , 0 , Z  

Re 
T 
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x ,y , z  (~,~7, ~') ' C a r t e s i a n ( d i m e n s i o n l e s s )  

coordinates 

ce : Thermal  diffusivity of air (--= 

k/oC~,) 
7' : Specific heat ratio 

8max : Maximum radial  displace- 

ment of the deformed torus 

/l : Fluid viscosity 

u : Fluid  kinematic viscosity 

p : Fluid density 

o" : Cylindrical  radius 

O : Dimensionless temperature 

1. I n t r o d u c t i o n  

In a rol l ing deformed tire, mechanical  energy is 

converted to heat dur ing  the constant  flexing of 

the rubber. Some of this heat is conducted to the 

outer surface, where it is carried away by convec- 

t ion to the air sur rounding  the tire and by contact 

conduct ion  to the roadway. In addit ion,  some of 

the heat generated is conducted to the inside 

surface of the tire, where the convection carries it 

from the hot rubber  surface to lhe relatively 

colder rim. Tradi t ional ly ,  the latter energy path 

has been neglected, since it was assumed that the 

inner  air was in so l id-body rotation, leading to 

an adiabatic wall condi t ion  at the inside surface 

(Clark 1976). 

However, hot wire anemometer  rneasurements 
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of inner-air  velocities reported by Schuring et al. 

(1982), were found to be on the order of ten to 

thirty percent of wheel speed, relative to the 

rubber. Subsequent measurements (Rae and Skin- 

ner 1984) provided greater detail about the veloc- 

ity distributions and led to the conclusion that the 

heat transfer to the inner air could be competitive 

with that occurring on the outer surface. These 

measurements, along with an analytic solution for 

the flowfield in a very thin tire at vanishing 

Reynolds number (Rue 1983) served to establish 

the main features of the flow, which can be regar- 

decl as steady when viewed in a coordinate system 

translating with the wheel. 

The objective of this paper seeks to extend the 

analysis of Kim (1997) to include the temperature 

distribution inside a rolling deformed lotus, and 

to establish more realistic models of the tire cross- 

sectional shape, Analytic solutions for non zero 

ratio of cross-sectional radius to wheel radius 

appear to be a much more difficult problem, 

because the governing equations are fully three- 

dimensional, in addition to the complications 

already mentioned by Kim. Numerical solutions 

of the complete equations have been reported in 

Taulbee et al. (1984) and Wey (1985) for 

Reynolds numbers up to 100. 

"l'he basic equations and approximations made 

are presented in Sec. 2. Then, the temperature 

field and its associated heat flux are considered in 

Sec. 3, where the tire is modelled as having a 

given distribution of surface temperature: uni- 

formly hot on a portion representing the tread, 

uniformly cold on a portion representing the rim, 

and having a linear and sinusoidal distributions 

of temperature between these extremes, on lhe 

portions representing the sidewalls. For these 

temperature distributions, there is a flow of heat 

even in the absence of torus deformation or in- 

duced air flow ; the heat transfer distribution in 

this case amounts to a calculation of the shape 

factor for pure-conduction through a static 

medium in a differentially heated toroid. 

For small values of the radius ratio, the tire 

geometry approaches that of a pipe whose axis is 

straight, but whose cross-section is deformed. In 

this limit, analytic solutions can be found in two 

cases : the first applies at small Reynolds number, 

where the appropriate equations are those of 

Stokes flow, and reduce to Poiseuille flow when 

the deformation is small enough that the longitu- 

dinal components of the shear stress are negligible 

in comparison to the traverse ones. This limit is 

discussed in Sec. 3, along with the modifications 

that are caused by the inr~er air flow when the 

torus is deformed. 

The problem of finding the distribution of the 

rubber temperature in an actual tire is much more 

complex. It is necessary to consider in detail the 

mechanics of the deformation and distribution of 

volumetric heat generation, in addition to the 

distribution of the heat transfer coefficients 

(Trivisonno 1970, McCarty 1982). The present 

work is an a~temp~ to shed some light on only the 

last of these, and is an essential first step in 

clarifying both the magnitude and the basic 

mechanics of the internal-air energy-conduction 

path. 

2. Formulation of  Problems 

The energy equation, assuming constant ther- 

mat properties and neglecting dissipation, has the 

following form in the Dean coordinates : 

, 3 T  , Vo a T  , w 3 7 "  

L, a;~ ~- r ~ 0 ~ - ~  -?;~ <l) 
r #27" 1 3 T  1 3 e T  

= a l -~ r  ~ + 7 j 7  + ;~v 2 i U  
c o s O / O T  I c ) T N .  I c)'2T I 
- ~ t, i f V -  ;:7)~ )-~- ~ a~ 2/' 

where T is the temperature, f f=/e / l )Cv  is the 

~,hermal diffusivity of air, k and C~, being the 

thermal conductivily of air and specific heat at 

constant volume. The cylindrical radius is denot- 

ed by o', while tJ,-, z;0 and w denote the velocity 

components in the r,  0 and q5 directions, respec- 

tively. For some purpose it is useful to separate 

the solid-body rotation parts of the qS-component 

of the velocity, as follows : 

w : :  22a + w' (2) 

where ,,(2 denotes the angular velocity of rotating 

lo tus.  

Cons ide r  n o w  a pipe whose unde fo rmed  cross- 
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sectional scale is a, and has a deformed region of  

length 2L and maximum deflection 3max(see Fig. 

I). The  velocity of  the wall in the z -d i rec t ion  is 

called c. The appropr ia te  energy equat ion with 

the th in- t i re  limit can then be written in the 

car tes ian-coord ina te  form by letting the cross 

sectional radius r be small in compar ison  to the 

wheel radius R,  as follows : 

U~x+. v~Ty+ w 8T3z 

(82T , 82T , eaT] 
= . -  a77 . 77 (3) 

where z = R ( q S - r c )  lies along the axis of  the 

channel,  while x and y lie in the cross-sect ional  

shape. Here, R is the fixed radial location of  some 

convenient  point  in the tire cross section, such as 

its centroid in the undeformed state. The  coordi-  

nates and velocities are now made dimensionless,  

as follows : 

~=x/a ,  71--y/a, ~ z /L ,  
L u L v U V -  

C~rna x C' ~max C'  

w': 1) 
3m~ \ c 

and a dimensionless temperature is introduced as 

Fig. 1 Toroidal coordinates system. 

T - T o  
O=- T I _  To 

where To and T~ are the temperatures to be 

assigned to the rim and tread port ions of  the tire 

surface, respectively. This leads to 

O[ Pr 

where 
2 

82 2 82 

Re=-- c a  )'=Cp/Cv, Pr=~lzCp/k 
LJ 

The Poiseui l le- f low limit is now found by 

taking Re--+ 0, a/L  ~ 0 ; the velocities and the 

temperature are expanded in powers of  a/L  : 

W'= W ' o + ~  WI"+@(a/L) 2 

U = ~ U ,  +@(a/L)  2 (51 

a V~+@(a/L)Z V =  T 

a 
O=Oo+ZO,  +@(alL)2 

Then the equat ions to be solved for the zeroth 

- and first-orders are 

32 ~2 \ 
? ~ - + ~ - )  O o = 0  (6) 

Re 880o_ )" { 8 = + 8 "~ ~ 

The boundary  condi t ions  are that Oo varies 

between 0 and I over prescribed portions of  the 

surface, while @~ is zero on the boundary.  

Table 1 Various thermal boundary conditions for the undeformed portion of the torus. 

CASE A(Wey 1985) B C 

0<_ 0 <-- 7:/4 
7 a-/4_< 0<2zc 

3 ;r <_ 0 <- 5 x/4 0 

~/4  < 0 _< 3a-/4 

57r/4<_ 0_< 7rc/4 

I 0 - -  zr/4 
zr/2 

0 5a-/4 
7r/2 

1 
2 ( 1 +cos0)  

0 

cos2(0 
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Fig. 2 Various wall temperature distributions for 
the pure-conduction limit as shown in Table 
1. 

(a) Present study 

The leading term in the temperature is the pure- 

conduction limit, while the first convection 

involves only the solid-body portion of the flow- 

field (i. e., the c in R e  on the left-hand side of 

the equation for O1) and also involves the 

~'-variations in Oo that are due to the deflected 

geometry, it is interesting that neither the primary 

nor the secondary velocities (Wo',  U ,  V~) affect 

the temperature field, to this order. 

The pure conduction term Oo has been calcu- 

lated for the undeformed portion of the torus, and 

for the different boundary conditions as shown in 

Table 1. 

In order to elucidate the effects of wall tempera- 

ture distributions on the heat transfer rates in a 

rolling deformed torus, these different boundary 

conditions are used. Figure 2 shows the above 

wall tempe.rature distributions for the pure-con- 

duction limit. 

3. R e s u l t s  and  D i s c u s s i o n  

The above limiting case can be easily calcu- 

lated, using Poisson's integral. The distribution of 

temperature at all points ( r ,  0) in a cylindrical 

volume with a given distribution of surface tem- 

perature is given by (Carslaw and Jaeger 1980) : 

_ 1 f ~  O(a ,  ,~)(a ~ - r  ~) d,~ 
O ( r ,  O) - 27cj0 a 2 + r ' ~ - 2 a r c o s ( 2 - O )  

(8) 

The curvature and deformation of the tire volume 

are neglected at this level of approximation. 

(b) Three dimensional numerical study (adapted 
from Wey, 1985) 

Fig. 3 Temperature profiles at the cross--section of 
the tire with qS-- 180 ~ 

The calculated results of the distribution of 

temperature profiles at the cross-section of the 

tire wilh ~b=180 ~ are compared with lhe results 

taken from Wey (1985), and presented in Fig. 3. 

It should be noted that the code used in Wey are 

the three-dimensional one. In interpreting these 

results it should be kept in mind that between q5 

=150 ~ and 180 ~ the secondary flows moves 

toward rim, as described in Wey. The effects of 

secondary flow shifting hot air from outer wall 

(bottom) to the area between the center and outer 

wall can be seen. 

The corresponding heat transfer rate, expressed 

in terms of a heat transfer coefficient h, is 

q " -  k i~ T o~O - - ~ -  = ~ h ( T a - T o )  k ( T ~ - T o l - ? r -  = ~ 

(9) 

Thus the Nusselt number is defined as 

�9 2a _ 2 _ _ _ ~ O  (10) Nu=--h /i -- O ( r / a )  ,~=~ 

A positive value of N u  corresponds to heat trans- 
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Fig. 4 Heat transfer rates for the pure conduction 
limit with different boundary conditions of 
wall temperature distributions as given in 
Table 1. 

fer from the wall to the gas, and conversely. 

Figure 4 shows a numerical evaluation of this 

quantity with different boundary conditions of 

wall temperatures; Poisson's integral was used to 

calculate O at r : 0 . 9 9 a ,  and the radial gradient 

can then be evaluated, for example by forming the 

difference of the temperature at a radius just 

inside the wall and the temperature of the wall, 

divided by the increment in radius 

30 _ O~T/a: l~--O~r/~:0 .991 ( 1 1 )  
3 ( r / a )  0.01 

The evaluations of  Poisson's integral were done 

by the Simpson rule, using zJ/l=0.5 ~ The results 

of Nusselt number distribution with the thermal 

boundary condition A, shown in Fig. 4, match 

quite closely with those found by Wey (1985) in 

the region away from the footprint. Figure 5 

adapted from Wey's thesis shows how this Nusseh 

number is distributed over the inside surface of 

the tire. Actually, the exact analytic evaluation of  

the Poisson integral would yield logarithmic sin- 

gularities at the positions where the slope of the 

wall temperature versus angular position is dis- 

continuous, but this detail is not worth pursuing, 

for the level of approximation being used here. 

(The peaks in this distribution are analytically, 

logarithmic singularities, but are assigned finite 
values by the numerical evaluation). 

Of principal interest here is the net heat transfer 

to the wall, per unit distance along the tire : 

~,~ fq"dA _a f2~q,,dO 
dz 

Fig. 5 Heat transfer distributions (adapted from 
Wey, 1985). 

- -  Nu dO ( 1 2 )  ]?( T I ~  To) .foo z~r 

For the results shown in Fig. 4, this integrated 

heat transfer rate has the following values with 

different thermal boundary conditions 

/ '+3.802317 for CASE A 
2~7' +4.196146 for CASE B (13) 

k ( T l -  To) [+3.805207 for CASE C 

The positive sign indicates a net heat transfer 

from the hot portion of the wall to the cold 
portion. 

4. Conclusions  

The structure of the temperature field in the 

inner air and the distribution of heat transfer rates 

over the inner surface are studied analytically 

with the pure-conduction limit. Results of these 

analyses show that the distributions of tempera- 

tures and heat transfer rates are strongly influen- 

ced by the thermal boundary conditions at the 

inner and outer tire surfaces. These results are 

compared with those found by Wey (1985) and 

reasonable agreement is obtained in the region 

away from the footprint. 

For better understanding of the fluid-mechani- 

cal and thermal behaviour of  this fascinating flow 

problem, however, it may be necessary to perform 

the experimental works. In the near future we 

would be glad to compare these theoretical results 

with those obtained by anyone in the same field. 
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